Thursday, May 22, 2014

Oh Shoot Dang

On May 13 I bought 145 shares of YuMe stock. They were to report earnings the next day. The company looked very healthy and the forecasts were good. Unfortunately, the day they reported, their Chief Financial Officer stepped down. Due to this unforeseen change, their stock went from $6.80 to $5.37 quickly. I lost $200 and so that sucks. This week has opened my eyes to just how unpredictable the stock market is.

These past couple weeks I have been keeping track of stocks I've previously been invested in. It seems as if there's a trend between if a company id big and their stock rebounding quick if something goes wrong. I think for the next little bit I will focus on trying to find a stock to invest in long-term. The money I have into the market right now is not a necessity to get back so I don't mind having it in there for a while.

On a happier note- the 20 time project fair went really well!! Here is a picture of me telling the public about stocks with Sarah showing some sass to my right.

Thursday, May 8, 2014

20-Time Pitch!!

This Tuesday, May 13 I will be at the Northwood University's Hach Center to present this project along with my fellow classmates also participating in "20-Time." The event will take place from 7-8PM for the public so please stop by and see what I have prepared! Also, refreshments will be provided!

Since my last post, I have sold ALGN for a loss of $40 :( BUT, I bought into WCIC (50 shares at $19.14) and have already sold them at $19.45 for a profit of around $20!

These transactions, along with my previous investments put me back to square 1. I started with $1000 and I'm currently only $6 short of that figure. I have learned a whole lot these past two weeks about industry. When investing, I am now researching into how the specific industry is doing for the company I'm buying into. I believe this knowledge will help me with future transactions.

So again, be sure to check out many awesome projects, including mine, this Tuesday! Till next time!


Probability In The Stock Market

For my IB Pre-Calculus class, I have been working on an extensive math exploration essay. The subject was left very open so I naturally chose to do mine on the stock market! If you're a "mathy" person then I think you will enjoy it! Here it is:

Using Probability in the Stock Market
Jeffrey Searle

Warren Buffett, the most successful investor this world has ever known, once said: “Price is what you pay. Value is what you get.” The stock market has always amazed me. The whole premise is kind of mind-boggling, and it’s one of the few things I don’t think I’ll ever completely understand. For this reason, and also because I love money, I chose to pursue this topic.
A month ago, I joined an investing simulation game on MarketWatch and began testing investment strategies. I settled on one technique that seemed effective. After a lot of consistent success (I made a 30% return in one month), I started to wonder if there was any real correlation between the numbers I was basing my decisions on and the success I was having. I asked myself the age-old question of “can I really predict what stocks will do?”
Ever since the New York Stock Exchange opened on May 7, 1792, people have been wrestling with that question. If someone could actually predict what the stock market would do then they would never have to graduate high school, and could easily become the richest person in the world, assuming they have access to a little bit of money. Now I know that no one can actually predict the future with absolute certainty. It is possible, however, to use probability to find correlations between past figures and future ones. That is simply what I am setting out to do. I want to find a way to link past stock figures to future ones with a reasonable success rate.
Two weeks ago, I invested $1000 into the stock market through a USAA brokerage account with the hope of making a nice profit. I’m currently investing on what I would call “educated whims,” but by the end of this exploration I hope to be investing solely using the strategies I discover to be effective.
            By this point you may be wondering what exactly I’m talking about. As you probably know, the market is all about buying shares in a business and selling those shares for a higher price later. It’s like a flea market for intangible goods that’s run so efficiently and effectively that you seldom need to worry about anything other than investing in the right stock.
            So how do you go about picking the right stock? I base my investment decisions around when companies release earnings reports. By law, corporations must release financial statements every quarter that detail the previous quarter’s earnings and cash flows. I have found that every time a business releases earnings, their stock either soars or tanks. The trick now becomes finding which stocks are going to jump. I have found a few figures within earnings reports that seem to always be paired with the “winner stocks.” I am going to focus my efforts on trying to find correlations between selected figures and stock increases.
            In simple terms, I will be checking if what I think affects stock price actually does. I am primarily going to use the Chi-squared Test for Independence for this investigation.
First though, let me explain my struggle with finding a way to make this whole probability application work. I first wanted to use percentage changes in stocks within the Chi-squared test. This became a problem because you need frequencies to do the test. I just hated this because it meant that I had to “water down” the whole test. I know what you’re thinking, you can change percentages to frequencies, but I am not working with percentages in the sense of probability where the percentages add up to one, I’m working with percentages that represent how much a stock went up or down and price. This type of percentage cannot be converted to frequencies. Instead, I had to assign ranges of what I decided were small, reasonable, and large percentage increases or decreases. I had to decide which figures would fall into which of those categories as well in order for the test to work. I explain in the index what exactly these ranges are. At first I thought by doing this it would not give me the accurate results that I wanted, but after thinking about it I realized that the premise is still the same and if there is a correlation I should still be able to see it.
In the index you will find all the data I collected. All of my tests will be testing between the percent change and various figures that I’ve been collecting. I will first test between forecast change of EPS over the last quarter (last quarter’s EPS minus the EPS forecast for this quarter). Here is my Chi-Squared test made by using the data from the index:

χ² Test of Independence for EPS Change in Forecast and Percent Change

Hypothesis: Ho- variables are independent; Ha- variables are dependent
Because I want to see a fairly definite correlation between the two variables, I will be using an α value of 5%

fo








fe        








I performed the above equation on my TI-83 Plus by using the STAT and LIST functions. By doing so, I received a x^2 score of 9.918577075! Then I just plugged it into the calculator using 5 degrees of freedom (6 rows and 2 columns). This gave me a P-value of .0776.

Conclusion (of test): My P-value was greater than my α value, but not by a whole lot. That means that the test was inconclusiveL. However, it was fairly close to my α value!

            In review, percent changes in price for a stock is not shown to be dependent upon EPS forecast changes between two quarters.
So what does this mean for me? These figures are what I’ve been basing my decisions on for the past month, and I’m a little disappointed that they weren’t conclusive. Since I began this paper, I can see why my initial success doesn’t seem to line up with what I’m coming up with after doing this test. I can see this because since that point I have begun to lose money. Not a whole lot, but a substantial amount. It makes sense that this would happen because if there really was a correlation between EPS forecasting and stock price changes then I would have continued success. I really thought my results would turn out conclusive, but I’m glad that I understand they’re not.
            It actually makes a lot of sense that there isn’t a correlation. I mean, if someone like me could just look at a number available to the public and control the stock market then everyone would be doing it. The stock market is complex and unpredictable. There are “experts” out there who will tell you conflicting thoughts about what you should invest in and why every day. They’re only right half the time though. That’s the thing about the market- it always seems like one day you’re right and the next day you’re not. In order to be considered a successful investor, you have to use your strategy for a long period of time and see if the overall trend of your investments has been positive. That’s why so many people screw up with short-term investing. Short-term investors will see one failure and never invest the same way again. I have been looking at data from one day. It’s no wonder that my results were inconclusive when I’m looking at a short period of time in a market that has countless things influencing it at the same time.
            Before I started investing, I did some research on “day traders.” Everything I read was telling me that it’s a bad idea because for the most part, those that do it eventually become failures. The results from my test support this claim. What this whole exploration has taught me is this- I need to invest with a broader scope and for longer periods of time. I think this is a better and safer way to be successful.
            My findings will help me in future investments. Even though the market completely boggles my mind, I will not stop in my efforts to understand and conquer it. My goal by the end of the school year is to have implemented what I discovered during this exploration and make $200 in profit through investing. While the stock market may be unpredictable, some things are for sure, I will have failure and I will have success.
          
Index


Explanation of Ranges:
EPS-
The range of figures between 0 and ±.049, I considered as “small” increases/decreases.
The range of figures between ±.05 and ±.099, I considered as “medium” Increases/decreases.
The range of figures between ±.1 and ±∞, I considered as “large” Increases/decreases.

Percent Changes-
Percentage changes between 0% and 4.9%, I considered as “small.”
Percentage changes between 5% and 9.9%, I considered as “medium.”
Percentage changes between 10% and ∞%, I considered “large.”

Bibliography
"DIGSTATS: Chi-Squared." DIGSTATS: Chi-Squared. N.p., n.d. Web. 3 May 2014. <http://www.sv.vt.edu/classes/digstats/main/inferant/d_chi.html>.
"Pearson's chi-squared test." <i>Wikipedia</i>. Wikimedia Foundation, 5 Mar. 2014. Web. 3 May 2014. &lt;http://en.wikipedia.org/wiki/Pearson's_chi-squared_test&gt;.
"Earnings Calendar for April 13, 2014." NASDAQ.com. N.p., n.d. Web. 3 May 2014. <http://www.nasdaq.com/earnings/earnings-calendar.aspx>.
"Market Watch Stock Quotes." Market Watch. N.p., n.d. Web. 1 May 2014. <http://www.marketwatch.com/>.